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SPECTRAL ANALYTIC METHODS FOR THE ESTIMATION OF
NUMBER OF SIGNALS AND DIRECTIONS OF ARRIVAL
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Consider the model

x(t) = As(t) +n(t), t=1,...,N

where at time t, x(t) is a p-complex vector of observations, s(t) is a
q-complex vector of unobservable signals emitted from q sources and n(t) is
a noise p-complex vector variable. It is assumed that {s(t)} and {n(t)}

are independent sequences with

Eln(t)n(t)"] = 0’1, Els(t)s(t’)] =T

» Elx(t)x(t)"] = ATA” + o™

The matrix A has a special structure with its k-th column 8y of the form




where j = y-1, ™" = c'lAsinﬂk, Ok being the direction of arrival of the

signal from the k-th source. The problem is the estimation of q (the
number of sources) and Oi’s (the directions of arrival).

The paper presents an information theoretic criterion to decide on q,
the number of sources, and a spectral analytic method to estimate the ri's.

The proposed method is straight forward and has some advantages over the
search methods proposed in the literature for the latter problem. For

instance, our method works even when the signals are coherent, i.e., the
covariance matrix I of signal is singular, whereas the MUSIC algorithm
generally used in searching for the estimates of oY is not applicable.

Key Words and Phrases: Akaike information criterion, Direction of
arrival, General information criterion, Signal processing.

AMS Classification Index: Primary 62F12: Secondary 62H12

1. INTRODUCTION

The problems of estimation of the number of signals and the directions

of their arrival have been considered by a number of authors under the -
model c
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x(t) = As(t) + n(t), t=1,...,N (1.1)
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n(t) is an additive p-complex noise vector.

It is assumed that ({(n(t)}, {s(t)}, t =1,...,N, are independent sequences

of iid random variables such that

E(n(t)] = 0, Eln(t)n(t)’] = 0’1

E(s(t)] = 0, E(s(t)s()"] =T (1.2)
where the star sign indicates the complex conjugate. Then we have
£ = E(x(t)x(t)"] = ATA" + oI (1.3)

We generally assume that the signals are not coherent, i.e., the matrix T
is positive definite. However, this condition is not necessary for the new
method of estimation we develop in Section 4 of this paper.

The pxq matrix A has the special structure

A= (51....:aq)
-jw.T -jw_(p-1)7
8, = g(rk) = (1,e o k, ce., @ %o k) (1.4)

where j = v-1, LA cla sinOk, ¢ = speed of propogation, ‘k is the

direction of arrival (DOA) from the k-th source and A 1is the inter

sensor distance. We may take W, to be unity without loss of generality.

There are two important problems connected with the model (1.1, 1.2).
One is the estimation of q, the number of signals (i.e., the cho‘ce of the

model), and another is the estimation of rl,....rq providing the
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estimates of 01,...,0q, the directions of arrival. We discuss these two

problems with references to earlier work and propose new solutions.

2. INFORMATION THEORETIC CRITERIA FOR MODEL SELECTION

In view of the assumptions (1.2), if we assume that n(t) has a

p-variate complex normal distribution, then the statistic
-1 ]
S = N D x(t)x(t) (2.1)

has a complex Wishart distribution with N degrees of freedom and covariance

matrix I = ATA" + oI as in (1.3). If the covariance matrix of the
signals is nonsingular, then the number of signals is q = p-s where s
is the multiplicity of the smallest root of L. Hence the problem of
estimating q can be studied within the framework of testing the equality
of a given number of smallest eigen values of L, for which a statisfactory
solution exists (see for instance Anderson (1963), Ligget (1973), Rao
(1973, 1983), Schmidt (1981), Tuft and Kumaresan (1980), Wax, Shan and
Kailath (1984)).

The log likelihood based on observed data, apart from an additive
constant, is

49 = - Bilog || + tr £7'8) (2.2)

where q indicates the number of signals. The maximum of (2.3) for given
q is

X4t

' ?&q’ = --g[% log Xi + (p-q)log —9115:6———2 (2.3)
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where Xl > ... > Sp are the eigen values of S assumed to be distinct

(with probability 1). The likelihood ratio statistic for testing the
equality of the last p—q eigen values of I is

VTSRS |
q P q +1 *
G = 2(2{P-£{T’) = N[(p—q)log —LH——P _ log(ﬁq“ ﬁp)l
(2.4)

which is asymptotically distributed as x’ on (p--q)2 - 1 degrees of
freedom (d.f.). Let

a = max (q: GyY < Cy)

where Ca is the upper tail o% point of x’ on (p—q)z -1 d.f. Then an

upper (1-a)% confidence limit to q is a.

However, to get a point estimate of q, we can use a general
information criterion (GIC) developed by Zhao, Krishnaiah and Bai (1986)

GIC(K) = 224 - v(k)Cy (2.5)

where wv(k) is the number of free parameters in the model and CN is a

function of N such that as N-> &

?—»0 and oglog — ®. (2.8)

In the present problem (k) = q(2p—q) + 1, and the decision (estimatier)

rule is the choose q = a where




GIC(q) = max GIC(Kk). (2.7)

It is shown by Zhao, Krishnaiah and Bai (1986) that under the condition
(2.6), the GIC rule (2.7) is strongly consistent, i.e.,

A
q%q a.s. as n->®. (2.8)

Criteria of the kind (2.7) for model selection have been used earlier
with special choices:

2, Akaike

Cn

log N, Kashyap, Schwartz, Rissanen
¢ loglog n, for some ¢ > 2, Hannan and Quinn.

All these choices except Akaike’s give a consistent estimate of q. There
are, however, no adequate studies on the choice of CN in finite samples.

Rao and Wu (1989) indicated an adaptive method for choosing Cy in a

similar context. Further research in this direction is necessary.

3. ESTIMATION OF DOA: NOISE SPACE METHOD

For a given q, the eigen values of L are of the form

2
Al2z...2 Xq > Aq+1 = ... = Ap(s a’). (3.1)

Let .y @ e_ be the corresponding eigen vectors and define

LTERERYT JNT JUPTRRRS

the matrices

E, = (31,...,gq), E = (e co,e ). (3.2)
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The spaces spanned by the vectors in Es and En may be called the signal

and noise eigen spaces, respectively. It is easily seen that
(r)'E_ =0 « D(r) 2 a(r)'EE a(r) =0 (3.3)
ar) B = =3 nna T’ * :
for 1 = T i=1,...,q, as defined in (1.4). In practice we have only

the estimate S (as defined in (2.1)) of L. The eigen values and eigen
vectors of S

e (3.4)

provide consistent estimates of the corresponding eigen values (3.1) and
eigen vectors (3.2) of the true L. An estimate of En spanning the noise

eigen space is

A

E, = (3q+1""'3p)' (3.5)
The function

D(r) = a(r)'E f a(r) (3.6)

vhich is an estimate of D(r) defined in (3.3) may not vanish for any 7,

but is likely to be small in the neighborhood of rl,...,rq. Then they may

be estimated by plotting llﬁ(r) and locating the peaks, which is the
basis of the MUSIC algorithm (see papers by Bienvenu (1979), Schmidt (1981)
and Wax, Shan and Kailath (1984)). As the solutions are obtained
essentially by a search method, their analytical characterization is
complicated so that the statistical properties of the estimates are
difficult to study. We propose an alternative simple computational
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technique which provides definitive estimates and which enable us to study
their asymptotic properties.

We note that there exists a matrix G of order pxr (with r written
for p-q)

G=(G,....G) (3.7)

where gk is of the form

4
Gy = (0,...,0,g,,... 0,...,00, k=1,...,r, (3.8)

14 gq+1 ?

with the first k and the last (p-k-q-1) components as zeroes

g > 0, gIE; + ...+ gq+IE§+1 =1 such that g(r)'G = 0, for

g+l
T =TT, and exp(jr‘),...,exp(jrk) are the solutions of the

polynomial equation

gq+lzq +...+g, =0 (3.9)

Then the strategy is to estimate g = (gl,... ) and use them in (3.9)

'8q+1
to obtain the roots which provide the estimates of TirerooTge

Since the columns of G generate (i.e., provide a basis of) the noise
eigen space En of L, the statistical problem of estimating G may be

.,G. to the estimated

thought of as fitting a basis of the type G r

T
noise eigen space ﬁn given in (3.5). The mathematical problem may be

formulated as that of minimizing the Euclidean norm

1§, ~GB| (3.10)




with respect to a matrix G of the type (3.7) and an arbitrary matrix B of
order rxr.

As the optimization problem (3.10) is complicated, we suggest some
alternative procedures. By Householder transformation (for which reliable
software exists), i.e., multiplying by an unitary matrix O of order r, we

A
can convert En into the form

808
Eno =H= (‘3q+1'“«q+z""'59) (3.11)
h ( 0,....00", i i th
where 5q+i = ul,q+i""’5q+i,q+i’ N , 1=1,...,r, wi
uq+i,q+i # 0 (with probability 1). We may choose 5q+l as an estimate
’
of (31"""q+1) , solve the equation
q
B(z) = Uoriqr? ¢ U o T 0 (3.12)
obtain the roots in the form
i7
i
pe K k=1,....q (3.13)

and choose ? ,...,? as estimates of r_,...,r

1 q 1 q’

To obtain the asymptotic distribution of the estimates, we introduce
some conditions.

(Al) The second moment of x(t) exists.

(A,) The fourth moment of x(t) exists.
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(A;) cov(Re s(t)] = cov(Im s(t)] = 27'Re T

E[(Re s(t))(Im s(t))'] = -E{(Im s(t))(Re s(t))'] =27} Im T

(A4) cov(Re €(t)] = cov(Im e(t)] 2—1021p

coviRe e(t), Im €(t)] =0

(A;) E(Re €,(t))* = E(In €, (t))*

]
L

&“

r

H

[y

TNY o

E(Re &, (t))?(Re €,(t))? = E(Im £,(£))*(Im &,(t))? = 4710

k#h=1,...,p

46!, xh=1,...,p

E(Re €, (£))*(1, €,(t)?

and all other kinds of fourth moments are zero.

The following theorems concerning the asymptotic properties of the
estimators are established in Bai, Miao and Rao (1990).

Theorem 1. Under the condition (Ax)'

L7 Bty g (rl,...,rq)'. (3.14)

Theorem 2. Under the conditions (Az)-(As) the limiting distribution
of

A

A A A . A A
By + iT, 4 Jﬁ(pl-pl,...,pq-pq) + JVﬁ(rl-rl,...,rq-rq) (3.15)

is gq-variate complex normal with zero mean and covariance matrix

ORI s WO W Y I AP Lt S TT D (3.16)
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where

G = diag(D(rl),...,D(rq))

ir jrs r
D(rk) = Bq, ﬁ (e k_ . De k

1 , k=1,...,q.
i=1,izk

A A A .
The asymptotic covariance matrix of TN = Vﬁ(rl-rl,...,rq—rq) alone is

2 1Re[G1(o* T~ (A*A) I Luo?T 1 )G ] (3.17)

Remark 1. Note that EQ+'+1,...,29 is a basis of the eigen space

spanned by : "gp’ so that if the number of signals is gq+s, then

~Q+S+1’ "

the corresponding g-vector with q+s+1 components is estimated by 2q+s+1'

In practice, it is advisable to estimate the 7 parameters starting with a
somewhat higher value than what is indicated by the GIC criterion, study
the configuration of the roots as done by Tuft and Kumaresan (1980) and
take a final decision on the choice of q and estimate the r parameters.
The computational algorithm outlined above is ideally suited to such an
analysis.

Remark 2. We can by postmultiplying H in (3.11) by a matrix B

reduce it to the form

HB = (u ) (3.18)

Ra+1°Xgqe2r -0 Yp

where Yoei = (0,...,0

beginning and

'vl.q+i’""Vq+1,q+i'o""’°) with i-1 zeroes in the

= 1. Then a possibly improved estimate of g. in

el ;

(31""'gq+1) is
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A 1 .
g = E:E(uj.Q+l *Viqeat et vj'p), j=1,...,q+l. (3.19)

The actual improvement in the estimate (3.19) needs to be studied.

Remark 3. There is a unique vector of the type 2q+1 in the space

generated by the columns of ﬁN‘ This can be obtained in a simple way,
without going through Householder transformation, as shown below. We

A
partition EN in the form

A
B
A (q+1)X(p-q)
En = ﬁN‘ (3.20)
2
px(p-1)  {(p-gq-1)x(p-q)
and solve the equation
A ’
ENzk =0, b= (bl""'bp—q) . (3.21)

The solution of (3.21) is unique (with probability 1) apart from a
scalar multiplier. Then

’ A

g = (gl""’gq+1) = ENXB

apart from a scalar multiplier.

4. ESTIMATION OF DOA: DIRECT APPROACH

Let us write gi as defined in (3.8) in the partitioned form
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G; = ( o g o (4.1)
1x(i-1) 1x(g+1) 1x(p—q-1)
where
’ L ]
£=(8,---180,) + 8y >0 llgll =1, Ag=0. (4.2)

. . b 3 .
Since Gi is an eigen vector of I = AA + 0°1 corresponding to the

smallest eigen value o® for each i, it follows that for any chosen
non-negative ”1""’”p-q

P=q . « P—q A ®

f"kgkzﬁlﬁﬂ ( f”kzko)¢=88°z (4.3)
attains the minimum value az(ul + ...+ up_q) at g satisfying (4.2),

where zko is the matrix obtained from L by retaining only the k-th to

(k+q)-th columns and rows. Then g may be estimated by mininizing
P—q *
Sy G £, subject to (4.2). (4.4)

Writing ﬁko for the (q+1)x(q+l) matrix obtained by retaining only the

k-th to (k+q)-th columns and rows in ﬁ, the expression (4.4) can be
written as

¢ Tunbond el (4.5)
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so that g, the estimate of g, is the eigen vector of ﬁo corresponding

to its smallest eigen value. Then we solve the polynomial equation

A A

gQ+1zk +...+8 =0 (4.6)

as in Section 3. Writing the roots in the form Qk = 3k exp(j?k),

;k >0, ;k € (0,2x), we obtain the estimate of Ty as ?k, k=1,...,q.

Note that in (4.3)

Pq P=q -1rak-1 3 P
By = LTy, = ?kak B! + (o Zu)lg (4.7)

so that even if I' is singular, when p is large enough, the first term
in (4.7) can be of rank q. The classical MUSIC algorithm fails when T is
singular, but the above method works.

In order to study the limiting distribution of ;k’ ¢k’ k=1,...,q,

we make the following notations:

jr iqr
80 = (1,e k,...,e k), (q+1)-vector.
A, = (510)""’2qo)' (q+1)xq matrix.
ir, jr
B =diag(e ',...,e V), qxq diagonal matrix.

Theorem 1. Under the condition (Al)

A A A ’ a.s. [
T=(r, .1 == 1=(r,...,n), (4.8)

2= (0.0 2o pay,..,1). (4.9)
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Theorem 2. Under the condition (Az)’ the joint distribution of

B+ 37
n * JTh, where

A A
= v’ﬁ(pl-l, cee ,pq-l)

>=>>

=3

A A
. Jﬁ(rl-rl,...,rq-rq),

tends to that of

P=q N - Pa -
QT B BEIT B T TIAC S p (BRIP4 BEIRF)) (4010
1 1

where (B;k’,R;k)) has a multivariate complex normal distribution and

q+1 jr, (k-1 q+1 r_(k-1)
Q= ding(F aenge L B aenge ).
k=1 k=1

Let R be a pxp Gaussian random matrix with the underlying variance

o' and ¥ be a gxp random matrix whose columns are iid multivariate

complex normal variables with mean zero and covariance matrix o°T.

Theorem 3. Under the conditions (A’)-(As), the random variables B;k’

and R;k’ in (4.10) can be characterized as follows:

(1) B{® is the submatrix of W formed by its (kel)-th to
(k+q+1)-th columns.
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(ii) R;k’ is the submatrix formed by the (k+l)-th to

(k+q+1)~th comumns and rows of R.

(iif) (R;l’,...,B;p°q)) and (R;l’....,R;p'q’) are independently
distributed.

From Theorems 2 and 3, it follows that the limiting distribution of
Kn + j@n is q-variate complex normal with mean zero and covariance matrix

P=q = k=1.-1.., P4 —lm = k=11 =
¢%§u@bwak‘)W&%%§‘rakhq‘ (4.12)

< (ATa 12" 4 * )1 2
V= (AA) AOE E Vo FisBis? Ag(AgA,)  + E f Ve T gy, (4.13)

Bxs = L B.‘E,.zv k,s=1,...,pq (4.14)

5 if k>
e (4.15)

3K’ if k<s

where J is a (p—q)X(p—q) matrix with only the entries in the diagonal
above the main diagonal as unities and rest as zeroes. The asymptotic

covariance of T alone is 2! times the real part of (4.12)

mark . It is seen that the expressions for the covariance

matrices of the estimates £ and 2 given in (3.16) and (4.12) are very

complicated. Perhaps, here we have a case for the bootstrap method for
estimating the covariance matrix. The numerical computations involved in
the bootstrap method will be considered in a later communication.
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Remark 4.2. It is seen from (1.1) that the conjugate vector Xx(t)
has the model

x(t) = A 8(t) +n(t), t=1,... N (4.18)

with the covariance matrix of X(t) as

T=2T2 + 0L (4.17)

Then

gi = (0,...,0,3Q+1,...,31,0,...,0) (4.18)

which is similar to gi of (3.8) with the components of the same g vector

written in the reverse order, is an eigen vector corresponding to the

smallest eigen value of T. Ve can estimate ‘q+1"""1 using the model

(4.16) in the same way as Byr-- is estimated using the model (1.1).

'O q+1
We have a developed method of combining the information proved by the

models (1.1) and (4.18) in obtaining an efficient estimate of By 1Bqyy

which will be given in a later communication.
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